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ABSTRACT

The problem of discrimination of certain cylindrical tank modes of
free surface motion arose in the course of an exploratory investigation of the
behavior of the fluid in tanks under random excitation. This problem is
treated herein for discrimination of symmetric and antisymmetric modes,
and several designs for specialized free surface measuring systems are
presented.
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NOMENCLATURE

a - tank radius

c - probe sensitivity constant
pn) = oy
dif(x) = b
x
Ey
probe or array signal outputs
E, .10 Ef EG
f(m, n, t) - i Exp(i wmnt)
Gmn - coefficients in potential function
g - acceleration of gravity
Hon - w:n Grn cosh &, (2)
h - fluid depth
IJm () - - Bessel function of first kind of order m
gy 1 - indices
k - index
m, n - indices
P(m, n, t)
convenient functions of f(m, n,t), H ., J,(§)and e,
Q(m, n, t)
r, ¢, = - cylindrical coordinate system
t - time



Xj = cos ¢,

k
z cos mo;
k _i=1 :
Am n
z cos ¢4
i=1
A -
€mn -
n -
A

NOMENC LATURE (Cont'd)

angular extent of averaging probes

th mode

spatial phase orienting the mn
free surface elevation
average surface elevation on tank circumference

between ¢ = dj +—§-and<‘b=¢i -%

9 r
roots of [5;- Jm(§ ;):l s =0

velocity potential

modal frequencies (angular)
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INTRODUCTION

The problem of discrimination of free surface modes in a cylindrical
tank became of interest in the course of preliminary studies of the fluid
response to random excitation (Refs. 1,2). In the particular case of longi-
tudinal excitation (along the axis of symmetry) of a cylindrical tank, what is
expected from sinusoidal excitation experiments (Ref. 3) is that the fluid
responds in 1/2-subharmonic modes of the excitation, In effect, excitation
frequency must be twice the linear modal frequency for that free surface
mode to occur. In sinusoidal excitation experiments, only one excitation
frequency is present at a time, and identification of the resulting modal fluid
response may be done by measuring the fluid-free surface elevation at some
point and comparing the response frequency with calculated linear modal
frequencies, and by visual inspection of the fluid-free surface.

However, the identification problem is considerably more complicated
in the random excitation case. Initially, data on the behavior of the free
surface under random longitudinal excitation were nonexistent, and,
consequently, some qualitative experiments were carried out. In these
experiments, a rigid cylindrical tank was excited longitudinally with a random
acceleration having energy content over a relatively broad band of frequency.
Visual observation confirmed the presence of symmetric free surface modes
and indicated, in addition, that many antisymmetric modes of higher order
than the first were present. It was concluded that under random excitation
the possible presence of all modes of fluid motion at once must be assumed.
Even a casual inspection of the lower order modal frequencies, of the infinite
number which are mathematically possible, indicates that there is so much
potential ambiguity that identification of the free surface modes present on the
basis of frequency alone might be practical only for the first antisymmetric
mode, and this marginally.

Since general methods of analyzing nonlinear random systems are not
immediately available and were certainly not within the scope of the present
project, the question arose as to just what could be explored in the random
longitudinal excitation program (Ref. 1). The conclusion was that the most
useful objective would be to attempt to find out if the fluid-free surface
behavior is essentially what might be expected from sinusoidal experiments;
that is, is the fluid motion under random longitudinal excitation a summation
of subharmonic response ?

The general plan for a first attempt was to vary the frequency distri-
bution of energy in the random excitation and measure the frequency distri-
bution of the fluid-free surface response. If significant fluid surface energy
were present at frequencies significantly lower than the band of significant



excitation energy, the presence of subharmonic response would be indicated.
Unfortunately, however, the modal frequency spacing is so small if all modes
are considered that resolution of individual modes by the necessary _f_r—équency
spectrum analysis would not be possible. The spectrum of fluid response at
any point in the free surface would be anticipated to be sufficiently '""blurred, "
and the ''sharpness'' to which a random signal can be bandpassed is suffi-
ciently gradual that clear distinctions between harmonic and 1/2-subharmonic
response were thought to be improbable. However, if by some special
measuring technique the contributions of all modes except the symmetric
(or the nth antisymmetric) were eliminated, the frequency spectrum of this
single remaining mode type might be satisfactorily resolved and might have
sufficiently pronounced and identifiable peaks so that distinctions between
harmonic and subharmonic response could be made.

Thus, the experimental design commenced with the assumption that
the free surface is a summation of normal modes. The problem discussed
herein is that of discriminating the contributions of one mode in the presence
of all the rest.

Since the axisymmetric modes were the obviously identifiable ones
present in the qualitative experiments, discrimination of these modes was
considered first. From the point of view of the influence of sloshing on rigid
body vehicle motions, the first antisymmetric modes are of most importance,
and discrimination of these modes is considered next.

FLUID ELEVATION MODEL

The mathematical model for the free surface as a superposition of
normal modes can be taken directly from linearized potential theory. In
particular, if the velocity potential is & and the dynamic free surface
elevation is n,

1 | 0%
n~-g-[5—;}z=0 ()

(where the z axis has its origin in the undisturbed free surface).

The usual treatment for a cylindrical tank results in a velocity poten-
tial as follows:

iwmnt z . h r
d = Zze MU G ancosh &n (;+;—) cos (mé + € ) Im (gmn ;)
n m

=0,1,2,...
=0,1,2,... (2)
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where the tank geometry is defined as in the sketch.

The factor Jp (£mn &) is the Bessel function of the first kind of

order m. The £, are the roots of:

5 om(eD)]

and the frequencies are defined by:

[}
(@]

(3)

= a

B (2) =t 1350 (Erun ) @)

The phase €,,, in the cosine factor is inserted to account for the fact that there
is no mathematical basis for orienting the circumferential mode patterns

with respect to the tank.

The linearized model for the free surface elevations with respect to
z = (0 becomes:

1 . i t h
n= _éz Z lwmnel‘"mn Gmn coshgmn( —5) * cos (mo + €p)
n m



Letting:

f(m, n, t) = ie ¥mnt

n = Zz f(m, n, t) Hpp cos(md + emp) Iy (gmn = )

a
nm

bt
[SS I AN

m = 0,
n 0

(6)

In Equation (6), the firsttwo factors for each choice of m, n and tank
geometry define amplitude and frequency and the last two factors describe
the spatial form of each mode.

DISCRIMINATION OF THE SYMMETRIC MODES

For the symmetric modes, m=0. The Bessel function of the first
kind has the property that:

I (0) =1

(7)
J; (0)=0 Fori=1,2,3,..

Thus, the fluid elevation on the axis of symmetry (r = 0) becomes:

M=o =Z £(0, n, t) Hgp cos (egp) (8)
n

and the discrimination of the m = 0 modes can be done with a single surface
elevation probe on the axis of symmetry of the tank. If the fluid-free surface
is a superposition of normal modes the signal from a probe on the axis of
symmetry should contain only the symmetric mode components present, and
a frequency analysis of this signal should indicate relative amplitudes of
these modes.

For present purposes, the ratioh/a 22 and the minimum tabulated value

of £, is about 1. 8. Thus with better than 0. 1% accuracy:

w%nn ('Z_) - gmn ’ 222 (9)




TABLE I

SYMMETRIC MODE FREQUENCIES

2 a
wml(g)
3. 832
7. 016
10. 173
13. 324
16. 471
19.616
22,760
25.904
29. 047
32.189

O 0O NN R WY ~O |8

DISCRIMINATION OF NONSYMMETRIC MODES

Preliminary

For convenience, Equation (6) may be expanded:

n = Z Z f(m, n, t)Hpp [cos mecos €y, - sinmé sin Gmn] Im" (gmn-;;)
n m

(10)

The object is to design an array of surface elevation probes which will con-
vert the double sum of Equation (10) to a summation over n for some particular
m (in the case of most interest m = 1, the first antisymmetric modes). At
first glance, a function of the outputs of an array of probes located at the

zeros of the Bessel Function for unwanted modes is enticing. However,

there are so many zeros of J, (gmnf-) that a probe array along some
arbitrary ¢ = ¢o would probably turn into an almost solid bulkhead, if of the
surface piercing wire type, and, inanyevent, would involve a prohibitive
number of signals. If it could be assumed that €.,,, = a constant for all m and
n, some possibility might exist for arrays which take advantage of the zeros of

r
cos md J, (gmn 3-)
and '

sin m¢' Jm (gmn 2)

Unfortunately, there is no justification for such an assumption.



The boundary condition on the cylindrical surface (Eq. 3) insures
that the Bessel function in Equation (10) is finite for all modes at r = a.
Consequently, probes at or very near the circular tank boundary will contain
contributions of all modes. Thus

Npoa =2 3 flmyn, t) Hy T (Ey) €05 €y cosmo
n m

-y > fmyn, t) HunJm (Emn) sin €mp sinme (11)
n m

Letting

P(m, n, t) = {(m, n, t) H Jm (gmn) cose€_

Q(m, n, t) = {{m, n, t) Hanm (gmn) sin € n (12)

Npoa= 9 Y Plm,n,t)cosmé - Y » Qm,n,t)sinmo
n m n m

=0,1,2
? r & l
=0,1,2 (13)

=}
|

Thus, the surface elevation at the circumference of the tank is in the form
of Fourier series with time varying coefficients. The coefficients do not
change with probe location along the circumference, and Equation (13)
suggests that the summations over m may possibly be removed by summing
the outputs of a number of probes, in effect a continuous spatial harmonic
analysis. If in addition, a procedure can be devised to separate the two
double sum terms in Equation (13), an estimate of the unknown phases, €,,,.,
may be possible.

Effect of Probe Averaging

All the expressions for free surface elevation involve the elevation at
a point. All practical probes average the free surface elevation over a finite
area. However, the type in common use is a wire piercing the surface.
Typical diameters of this wire are a/100 or less. Itcanbe seenthatfor sucha
small probe to smooth the contribution of any mode, the spatial semiperiod of
that mode must be perhaps 3 wire diameters. In the circumferential direction
of the tank boundary, a semioscillation of 3a/100 corresponds to about 1/100 of the
entire circumference for the case m = 50, Similarly in the radial direction
near the boundary, the ''semiperiod' for the Bessel functions of high order
is approximately

Ar
3% &mn o




Thus

e —

;;;;;

which implies £, #100, anddistortion will probably not set in until n = 30 for
m = 0,1,2,3; orn =25 for m = 16-18, for example. Thus for the lower modes
of interest, small wire probes are sufficiently close to '""point'' measure-
ments, Large diameter probes within the confines of the tank cannot be
considered for fear of interference with flow.

A type of probe well suited to recording surface elevation at the tank
circumference without disturbing the flow would be a capacitance plate
imbedded in the tank wall as in the sketch

Such a plate insulated from the tank fluid by a thin plastic tank wall would
act as a capacitor and, integrated into a bridge sensing capacitance changes,
would have a signal output closely proportional to:

A
¢ + >

2
. J.
E; c — ndo (14)
1 A A

¢i-—z'

The sensitivity of such a probe depends on the thickness of the insulation, and
a practical installation for a small lucite tank appears possible on the basis
of some crude trial experiments. Capacitance type probes have the additional



useful property that a number of probes as in the sketch, if matched in

sensitivity and shorted together, will yield a net capacitance change equal to
the sum of the integrals (14) for all probes.

A useful quantitative result may be obtained by carrying out the
integration of Equation (14) with the free surface elevation Equation (13).

A
bj +5-
E; o Z Z P(m, n, t) A cosAmd) do
n m ¢1 - ‘E
A
iz
-¥Y'Y Qim,n,t) f 2ot qo (15)
n m A
by - >

Carrying out the integrations

E; « z z P(m, n, t) cos (maj) dif (_r_nzé)

n m

- Z Z Q(m, n, t) sin (md;) dif(mzé) (16)
n m

where

i (73)
sin | —
.. | mA 2
dif [ ] = —A (17)
2
The function of Equation (17) is less than 1% different from unity over the
range

maA :
0< - L 0.24 radians
or A
0 < 22—- < 13.7 degrees

and relatively large plates can be used without serious distortion of the modes
corresponding to small m.




A 4-Probe Integrating Array for Discrimination of m = 1 Modes

The properties of the ''dif" function of Equation (17) suggested a 4-
probe array. In order to eliminate the symmetric modes from the output
signal, it is necessary to add and subtract pairs of probes. This can be
accomplished by wiring probes into opposite sides of a bridge circuit.

A probe array consisting of two capacitance plates wrapped around
the tank to include an angle of A radians each and located m radians apart can
be assumed. If the signal from a plate probe of width A and centered on
$; + m is subtracted from the signal from a like probe centered on ¢

. {mA

Er. 1 « Z Z P(m, n, t) [cos m(¢)) - cosm(p; + 17):' dif (T)

n m

- Z z Q(m. n, t) [sinm(¢l) - sinm(¢ + n')] dif (-mZ—A) (18)

n m
Simplifying

E;,_ z z P(m, n, t) dif(rr;A) cos md) [1 - cosmm]
n m

- z Z Q(m, n, t) dif (m_ZA_) sinmd, [1 - cosmm] (19)
n m

Choosing some probe sensitivity constant ¢: and ¢| = 0

E, _
2 1=}:2P(m,n,t)(2)dif(ﬂzé) m=1,3,5,...
¢ n m
: (20)
=0 m=0,2,4,6,...
1f¢>1 =12r-
E
Zc'l =y ) Q(m,n,t)(?.)dif(%é) m=1,3,5,...
n m -
(21)
=0 m=0,2,4,6,...



Thus, the array of four probes as in the following sketch wired into two
bridges will produce two signals, containing contributions of odd circum-
ferential modes only.

B

DA

2

~—~—

STeET

It remains to see how much may be accomplished toward rejection
of certain modes by a suitable choice of A. The function dif (X) has zeros
at

X = kn ’ k=1,2,3,...

Consequently, it is not possible to choose A/2 so that
— =k for m=1,3,5,...

for more than one odd mode. For example, if only the m =1 andm =5
modes are present, A can be chosen as 2w/5 (72°), andthe system will
reject the m = 5.

For the present case, interestcenters on rejecting all odd modes
except the first as much as possible. Equations (20) and (21), the two
bridge outputs, may be rewritten:

For ¢; =0
E, dif (E‘-é-)
zc 1 _ 5 ais (Zé) g ;mid P(m, n, t) — (é) (22)

10




¢ (A
EZ_I:-Zdif (?)zz Q(m,n,t)if—('—zz‘—)' (23)
¢ n meygq dif (z‘)

Table Il summarizes the relative contributions of the odd modes
[dif <m?A> /dif (Zé)]for various values of A. It may be seen from the first

column that a small A does not begin to attenuate any odd mode appreciably
tom = 19. The second and third columns indicate what happens when A is
selected so as to reject m = 7 and m = 5 modes. Columns four and five of
Table II are perhaps more interesting. A choice of A = 27/3 results in
rejection of the m =3, 9, 15,..., 3jmodes but attenuates the m = 5 and 7 only
80 or 85%. A choice of A = 3w/4 is the "compromise'' choice to make the
relative attenuation of all modes except the first 85% or better. It may be
seen that a choice of A of either 27/3 or 3w/4 would not result in an
impossibly bad 'filter" for experiments where interest was centered in
measuring the first odd mode in the presence of small higher mode ''noise. "
Thus, the present array might be useful in studies of rotational instability
under lateral sinusoidal excitation, for example.

TABLE II
ODD MODE TRANSMISSION, 4-PROBE INTEGRATING ARRAY
—~ A -

2w/314 2m/7 2m/5 2n/3 2m/4
(=1.1°) (8 51°) (=72°) (»120°) (~135°)

2 dif (A/2) 2.000 1 1.932 1. 872 1. 652 1.568
(m=1 1. 000 1. 000 1. 000 1. 000 1. 000

m=3 1. 000 0. 747 0.538 0 -0. 140

m =5 1. 000 0. 362 0 -0.197 -0. 083

. m=7 1. 000 0 -0.231 0. 142 0.141
iji—f_f(—mz‘%%forj m=9 0.999 -0. 200 -0.110 0o -0.111
if ) m=11 0.998 -0.204 0. 089 -0.092 0. 039
m=13 0.997 -0. 075 0.124 0.077 0. 032
m=15 0.996 0. 067 0 0 -0. 064

m=17 0.995 0. 131 -0. 095 -0. 054 0. 053
 m=19 0.994 0.094 -0. 053 0. 052 -0. 020

Actual measurements from both bridges simultaneously could yield
information on the variation of the spatial orientation of the node (€11) for

11



this case. Since for A = 27/3 the plates for the two bridges would overlap,
some special electronic measures would have to be taken, probably like
multiplexed carrier excitation of the overlapping portions as in the
following sketch. *

Excitation Carrier 1

©
oMoy NOL

@ -+«— Ixcitation Carrier 2

®

O+ O S O+®
©

Excitation Carrier 1 + 2

For the random longitudinal excitation case, however, the first two or
three odd modes are likely as not to be of equal magnitude; in fact, it is not
impossible that m = 3 mode may be much larger than the m = 1 mode. In
this case, the 4-probe integrating array probably does not have adequate
discriminating power,.

Equispaced Point Arrays

The results of Equation (13) suggest that the signals from multiple
point arrays of probes around the tank circumference may be manipulated as
in ordinary harmonic analysis to reject at least the lower modes from an
estimate for the first. In an ordinary L-point harmonic analysis, the
period (circumference in this case) is divided into L equispaced intervals,
and the analysis for the fundamental amplitude is free of the 2nd through
approximately the (L./2 - 1)thharmonic. In the present case, a 12-point
equispaced array would yield an estimate of the m = 1 modal amplitude free
of the m = 0, and m = 2, 3,4 and 5 modes. Higher modes would be present.
In addition, in an ordinary L-point harmonic analysis, the ordinates must
be multiplied by various positive or negative constants and added. Thus,
in order to adapt ordinary harmonic analysis methods to the present problem,
the L, probes must have at least [L/2 - 1] gain adjustments. This means
something like an L/2 amplifier analog computer setup, and a probable like

*Suggested by J. E. Modisette of the Department of Mechanical
Sciences, SwRI -

12




number of carrier amplifiers to convert the probe bridge outputs to reasonable
levels. In addition, if simultaneous measurements of each of the double sum
terms of Equation (13) are desired, the equipment requirements are doubled
(and the adjustment and alignment problem quadrupled). Though possible in
principal, the equispaced point arrays similar to ordinary harmonic analysis
techniques are not practically appealing. '

Doubly Symmetric Arrays (8k Probes)

If each half of the 4-probe integrating array is conceptually split into
two parts and account is taken of the effect of the plate width, it can be seen
that a doubly symmetric array of special form can both eliminate all even
modes (m = 0,2,4,...)and separate the two double sum terms of Equation (16)
for example. No special gain adjustment other than initial trimming would
be necessary. ’

b =21 - &) —rm ¢ =y
LA

¢=§§‘+¢i/>\f/./\‘\\/<_/‘¢=%' i
s _m
A S sty
¢ =5 ¢ /
/(/(/ \\{4’:"‘4’1
"'rr-l~<t)i

q)_

As shown in the sketch, the array, though not necessarily equispaced, is
symmetric about the angles ¢ =0and ¢ =n/2. If the eight probes are con-
nected in two bridges so that the two net signals are as follows:

A A A A
Ep o Mgogq ¥ Mo=zn-y " Mo=m-d; " Mop=msdy)

A

« A A A (24)
Eq @ [n¢=w/2+¢i Tg=m/2-¢; " No=3n/2-¢; ~ ”¢=3n/2+¢i]

where

A
Mo = ¢;

13



refers to the surface elevations on the circumference averaged from

b= i + -éz-to b= by - éz— (Eq. 16), substitution of Equation (13) and simplification
results in

Ep o % Zn P(m, n, t)(4) cos mo; dif (%—A—)
o

dd (25)

m -1

.. {mA 2
EQOC -Z z Q(m, n, t)(4) cos md; dlf(—z—) (-1)
n Modd
Thus, the double sum terms of Equation (13) are effectively separated and all

modes of even m are rejected. Essentially, the same result is obtained for
an array of 8k probes which is defined similar to Equations (24}):

k
k : A A A A
]2.9m Z]_ [n(bl + nZﬂvd)i - nTT—(i)i - nﬂ+(bi]
i=

(26)

k
k A A A A
EQCt z [7””/3+¢i + r’-n-/z—(bi - n3ﬂ/&“(i)1 - n3TT/Z+d)1]

i=1

Reduction as before yields:

k ... {mA k
Ep oc z Z P(m, n, t) [-} dlf(—z-)] iz cos md;

m+1

k
Eéoc z z Q(m, n, t) [(-l) 2 (4)dif(r—n-2-é)] z cos ma;

n Mgagdd 1=

Odd mode transmission is governed by

k

Z Cos maj and dif (_rn_E_A_)
i=1

If, as is desired, the m = 1 mode is to be passed, it is necessary that

k

) Z cos ¢; # 0

aie (
i=1

~ b

14




Thus, Equation (27) may be modified:

k k
Ep o Z P(l,n,t) + Z Z P(m,n,t) - D(m) - a_,
n n m=3,57,...
(28)
m+ 1
k 2 k
Eq o » Q(l,nt)+) > Q(m, n, t)(- 1) D(m) ap,
n n m=3,57,...
where
aif (f—n—‘}-)
D(m) = ————
L A
k
2 cosmqai
K izl
U * TR
z cosq)i
i=1

The first terms of Equation (28) are a summation of all the amplitudes
of the m = 1 modes, the result sought. The double sum terms are to be
eliminated as far as possible. From the results of a previous section, a
limited amount can be done with the factor D(m). Consequently, how many of
the odd modes which can be eliminated depend on how many zeros can be
achieved with am,. In effect, we require

a‘én:o for m=3,5,... (29)

If it is assumed that the lowest k of the modes m = 3,5, 7,... can be
eliminated with 8k probes, there results k equations in k unknown ¢'s

K
S cos(2j+1)4;=0 for j=1,2,...,k (30)
i=1
K

(where Z cos ¢; # 0)
i1

15



Even if a solution of Equation (30) for the elimination of the m = 3,5, ... {(2k+1)
modes can be achieved, there would remain in Equation (28) contributions

from the m = 2(k + 1) and higher modes. However, if the 2(k + 1)th mode

is sufficiently high, the lowest modal frequency [m = 2(k + 1), n = 0] might
perhaps be sufficiently removed from the lowest frequencies of the first

mode (m =1, n=0,1,2,...) so that a frequency analysis of the bridge

signals of Equation (28) would allow examination of these lowest m = 1 modes.

It is heartening to note that the Tchebyscheff-Radau quadrature
method for the integral .

i

f f(cos ¢) cos ¢ do (31)

-T

involves the solutions of Equation (30). The above integral may be shown to
be equivalent to the Fourier cosine coefficient for a harmonic series, and
the development of this section could equally well have been started with
Equation (31).

Usable solutions of Equations (30) are not so obvious in general. It
may be shown with the aid of the properties of one of the Tchebyscheff
polynomials that the system of Equations (30) is equivalent to:

i ) lz_J;__l_]ﬂ i X i=1,2,3,...,k
i=1 2950 J it
where
x; = cos ¢
and
[2j+11G) = [25+ 1) [25],..., [j+ 2] (32)

The system of Equation (32) is composed of symmetric functions. Unfor-
k

tunately, since no specification on the sums z xiJ is made, no systematic
i

way of finding roots for k ordinates could be found.

16




Particular Exact Solutions: Doubly Symmetric Arrays

Though general nontrivial solutions to the system of Equations (30)
were not available, some particular exact solutions could be obtained, and
tentative array design specified.

8-Probe array (k = 1). - When k = 1, Equations (30) reduce to:

cos 3<1>1 =0 (33)

and a useful solution is

-7 5
3 Wiy (34)
Since the closest position of probes would be 30°, A can be practically
chosen as 14°, resulting in the array as in the sketch.
¢ =0
330° ‘ 30°
\_{
300° ! 60°
\ /
240°/ / \ 120°
210° 150°
The signals would be:
14° 14°  _ _14° _ _14°
E;SOC[“30° + M330° - Mis0° n210‘*]
(35)
| 14° 14° _ _14° _ _14°
EQOC[n120° * Mgoe T M240° 11300"]

The odd mode transmission is shown by the function; D(m)al',n; as in Equa-
tion (28). This function was evaluated and is tabulated in Table III
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TABLE III

CDD MODE TRANSMISSION, 8-PROBE
ARRAY, A = 14°

Mode, m D(rn)a;.n
1 1.000
3 0
5 -0.941
7 -0.884
9 0

11 0.727
13 0.631
15 0

17 -0.422
19 -0.315
21 0

23 0.116
25 0.029
27 0

29 0.110

This probe array is similar to the 4-probe integrating array with A = 120°,
Table II, Column 4. As may be seen from the two tables, the 8-probe array
does nowhere near as good a job of rejecting odd modes. However, it has
the advantage that it rejects the m = 3 mode without overlapping transducers.
This would simplify the electronics considerably.

The initial portion of the anticipated modal frequency spectrum
of the outputs of this array may be summarized as in Table IV (where the

approximation of Equation (9) is employed and the numerical values are from
Table 2.4 of Ref, 4).

Table IV shows that considerable mode ambiguity in the bridge
signal frequency content starts at nearly the m = 1, n = 1 mode. Separation
of the (m =1, n = 1) mode from next higher modes would be very difficult
if not impossible with normal frequency analyses. The lowest antisymmetric
mode (m =1, n = 0) is separated by only 0.9 octave from the lowest unwanted
(m # 1) mode.
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TABLE IV

MODAL FREQUENCY SPECTRUM, 8-PROBE ARRAY
(For h/a > 2)

= “nm

: Frequency Order m n “mn \/é @10
1 1 0 1.35 1.000

2 1 1 2. 31 1.71

3 5 0 2.53 1.88

4 1 2 2.92 2.16

5 7 0 2.93 2.17

6 5 1 3.24 2.40

7 1 3 3.42 2.52

8 11 0 3.56 2.64

9 7 1 3.57 2.65

16-Probe array (k = 2). - When k = 2, Equations (30) become:

cos 3¢ + cos 3¢, = 0

cos 5¢; + cos 5¢, =0

(36)

Manipulating with half angle identities, a useful nontrivial solution results:

$) =15 (12°)
¢Z = {%T: (48°)

The closest probe position in this array is 6°, thus a choice of
A= 5° may be practical. The arrangement would be as in the sketch:
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102°

192° 168°

If corrections are made such that EIZ) and Eé as defined in Equa-
tion (26) (k= 2, A =5°, &) = 12°, ¢, = 48°), theodd mode transmission is
again defined by D(m)a?n as in Equation (28). This function was evaluated and
is tabulated in Table V.

TABLE V

ODD MODE TRANSMISSION, 16-PROBE
ARRAY, A =5°

Mode, m D(m)aZ,
1 1.000
3 0
5 0
7 0. 609
9 0

11 -0.962
13 -0.585
15 0
17 -0.563
19 -0.890
21 0
23 0.520
25 0
27 0
29 0.754

As in the 8-probe array, those odd modes which are not rejected
are very little attenuated; however, an additional low mode (m = 5) is
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rejected. It is interesting to note from Tables III and V that odd modes
which are a multiple of modes rejected are also rejected.

(All modes

defined by m having a factor of 3 are rejected, as is m =25 = 5 X 5, Table V).

The initial portion of the anticipated modal frequen

outputs is summarized in Table VI,

TABLE VI
MODAL FREQUENCY SPECTRUM, 16-PROBE ARRAY

' (h/a > 2)

£ Y“mn

Frequency Order m n “mn '\/; “10

1 1 0 1.35 1,000

2 1 1 2.31 1.71

3 1 2 2.92 2.16

4 7 0 2.93 2.17

5 1 3 3.42 2.52

6 11 0 3.56 2.64

7 7 1 3.57 2.65

8 13 0 3.84 2.84

9 1 4 3.85 2.85

10 7 2 3.86 2.86

11 11 1 4,18 3.10

12 1 5 4,24 3.14

13 13 1 4,45 3.30

spectrum of the

Table IV shows that the frequency content of the bridge signals would

be entirely m = 1 modes up to one octave above the lowest mode and that the

first two antisymmetric modes might be discriminated with a frequency

analysis,

32-Probe Array (k = 4). ~-When k = 4, the Equations (30) rcduce to

cos 3¢1 + cos 3¢2 + cos 34)3 + cos 3¢4 =

cos 54:1 + cos 5¢2 + cos 5¢3 + cos 5<|>4
cos 7¢1 + cos 7¢Z + cos 7¢3 + cos 7¢4

cos 9¢1 + cos 9¢2 + cos 9¢3 + cos 9¢4
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If:

® =157 &)
™
b =15 T o2
‘1:'_411'1'_(S (39)
3 - 15~ %2
_ 4T
¢4 =15 T 0

Substitution in Equation (38) and satisfaction of the resulting equations in the
6's yields:

51 = 63 (40)

and:

¢ = ———: (0.857°)

¢, = =—=—: (24.857°)

(41)
¢, = >0 (35.143°)

~J
—
=

¢y : (60.857°)

™
p—
o

The first quadrant of this array is shown in the sketch. The closest
approach of two probe centers is 1.714°, but, since the probesinquestion are
effectively added together, they need not be physically separated and & may be
taken as 1. 714°,

Connections would be made so that Eg and Ei as defined by
Equation (26) would be made. Odd mode transmission is defined by
D(rn)cxﬁ1 as previously. This function was evaluated and is tabulated in
Table VII. The initial portion of the modal frequency spectrum is tabulated
in Table VIII.
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TABLE VII
ODD MODE TRANSMISSION, 32-PROBE ARRAY,

A=1,714°
Mode, m D(m)a?n
1 1.000
3 0
5 0
7 0
9 0
11 0.798
13 0.614
15 0
17 0.490
19 0.439
21 0
23 0.269
25 0
27 0
29 0.967
TABLE VIII

MODAL FREQUENCY SPECTRUM
32-PROBE ARRAY (h/a 2 2)

f “rmn
Frequency Order m n “mn g “10
1 1 0 1.35 1.00

2 1 1 2.31 1.71

3 1 2 2.92 2.16

4 1 3 3.42 2.52

5 11 0 3.56 2.64

6 13 0 3.84 2.84

7 1 4 3.85 2.85

8 11 1 4.18 3.10

9 1 5 4.24 3.14

10 13 1 4.45 3.30
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.857°
29.143°
35.143°

\A =1.714°

54.857°

60.857°
65. 143°

79.143°
T 90.857°

It may be seen from a comparisonof Table V for the 16-probe array
with Table VII that doubling the number of probes and satisfying Equations (30)
for k = 4 result in the rejection of only one additional mode (m = 7) since
the m=9, 15,...,3i modes appear to be rejected if the m = 3 mode is rejected.
Thus, if a 24-probe array (k = 3) could be achieved, essentially the same
results as in Tables VII and VIII might be expected for 2/3 the number of
probes.

Table VIII shows that the frequency content of the bridge signals would
be entirely m = 1 modes up to about 1-1/4 octaves above the lowest mode.
The m =1, n =0, 1 and 2 modes might thus be discriminated with a frequency
analysis.,

Numerical Approximations: Doubly Symmetric Arrays

The preceding section indicated the potential virtues of a 24-probe
(k = 3) array, and it was mentioned that a rational procedure for solution
of Equations (30) for any k was not developed. In the process of attempting
to provide particular exact solutions, itwas noted that crude approximations
to solutions could sometimes be obtained graphically. If an initial approxi-
mate solution set is defined as: '
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[¢°] = [6365... 4]
and theerrors are defined as:
[D']" =[8] 65 83 ... &

such that the true solutions are:

- - » ] - ' ]
¢ &) &)
L) 4> &,
=1 T+ T =le°1 + DY (42)
¢k ¢i1 61‘(

Now if the initial approximations are sufficiently good, the 6; are
small angles and:

cos kS% = 1
(43)
. 1 - '
sin k6i = kﬁi
Then:

cos (2j + 1)¢; = cos (2j + 1) - (2j + 1)1 sin(2j + 1)éf (44)

If the approximations ¢{ are substituted for ¢; in Equations (30), the equa-
tions hecome:

k
cos 3¢; = Rg(# 0)

i=1

k

z cos 5¢; = Rg(# 0) (45)
i1

k

2 cos 2k + 1)4f =Ry L g (#0)
i=:1



If the approximations of Equation (44) are inserted in Equations (30), the
result is:
[s°]1 [D'] =[R°] (46)
where
sin 3¢‘i sin 3¢5 . sin 3¢y
sin 5¢; sin 5<:|>2 ... sin 5¢k
[So] = . . . . . . . . . . . . (47)
sin (2k + 1)¢] + sin (2k + 1)y
R3/3 1
R5/5
[R°] = . (48)
Riz2k+ 1)/(2k + 1) |

[D'] = * (49)

k

The matrices defined by Equations (47) and (48) are defined by the
initially assumed values of c|>i’ and may be evaluated. With the help of a com-
puter, Equation (46) may be solved:

[D'] =[5°]"! [Re] (50)
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and

0] = | | |=1¢°) +[s°] " [R°] (51)

$x

— -

The result of Equation (51) can only be regarded as a possibly improved
estimate of the ¢;, depending on how close the initial approximation was.
Although convergence is not proven, it was thought possible that replacement
.of [¢°] by the "improved' estimate [¢] of Equation (51) and a repeat of the
processes defined by Equations (46) through (51), etc., might with luck result
in reasonable solutions,

There is no reason to use the Equations (30) in order in this procedure,
for k probes, k equations are needed, and any k of the equations:

k
Z cos(2j+l)¢i=0 i=1,2,3,..., oo (52)
i=1

may be selected, depending on the particular set of k modes it is desired to
eliminate. For example, for a 32-probe array, k=4, and the odd modes

m =3, 5, 7, 11 might be eliminated by choosing j = 1, 2, 3, 5 for the four
equations [of Eq. (52)] to be satisfied.

Application of Numerical Procedures to
a 24-Probe Array (k = 3)

As mentioned in the previous section, a 24-probe array (k = 3) might
be useful, and the procedures just outlined were applied to this case.

When k = 3, Equations (30) reduce to:

cos 3¢1 + cos 3¢2 + cos 34;3 =0
cos 5¢; + cos 5¢, + cos 5¢3 =0 Y(53)
=0

cos 7¢) + cos 7¢, + cos T3 =
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After some manipulation Equation 38 becomes:

cos %(4’1 + ¢2) cos —3—(4)2 + ¢3) cos -g—(cbl + ¢3) -i—cos 3(¢1 + ¢, + ¢3)

L
4

cos -g-m + &) cos 2 (¢, + 3) cos -§—(¢1 t $3) = g cos 5(o) + 4 + ¢3)

cos - (4] + ¢) cos £ (&, + d3) cos T (é] + &) = T cos T(éy + b + ¢3)
(54)

On intuitive grounds, the sum of the three angles was assumed to be w/2.
Under this assumption, the set of angles:

_1llm 3lm 59n
q>i'.zlo’ 210’ 210

(55)

is found to satisfy Equation (54). Their sum is only approximately equal
to w/2, however,

157 357 63w :
Th t f l y ’ y 1 i -
e set of angles, 75, 577 573 makes one of the terms in each of the
equations zero. And the errors in satisfaction of Equations (53) with these
angles are of the same magnitude as result when the angles of Equation (55)

were substituted into. Equation (53).

It was assumed, therefore, that the angles of Equation (55) might be a
sufficiently close approximation to allow the numerical procedure in the pre-
ceding section to begin. The computations of Equations (46) through (51)
were programmed for the CDC 160A for k = 3, The iteration starting with
the angles of Equation (55) converged in 4 iterations to the 7 significant
digit capability of the machine. The results were:

$; = 0.0648354w = 11,67037°
¢2 = 0.1496475w = 26.93654°
¢3 = 0,3114235w = 56,05624°

The following sketch shows the first quadrant of this array. A A of 5°

appears practical. If connections are made so that E3 and EQ are produced
[Eq. (26)], odd mode transmission is defined by the function D(m)am This
function was evaluated using values of ¢ rounded to the nearest 0.001 degree,
and the results are shown in Table IX,
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TABLE IX

ODD MODE TRANSMISSION, 24-PROBE
ARRAY, A =5°

Mode, m D(m)a?n
1 1,.0000
3 -0.000017
5 0.000017
7 0.000020
9 -0.6165
11 -0.1621
13 0.4264
15 -0,3025
17 -0,6334
19 -0,2421
21 -0.5162
23 -0.3743
25 0.0158
27 . 0.6407
29 0.1295

29



-

In this case, the results are significantly different from those for
previous arrays. The rejection of modes which have m a multiple of three
ceases in this solution. In effect, what was hoped for with a 24-probe array
was rejection of the m = 9 mode essentially for free, but the 24-probe array
merelv does what is expected of it. It is worth noting that an analysis of
the errors introduced by errors in probe location will be necessary.

Table IX was computed for angles within £0,001°; the modes ""rejected'’ are
actually attenuated to one part in 50, 000 (roughly 100 dB, voltage ratio).
This precision can only degrade with the precision of probe location,

The initial portion of the modal frequency spectrum is shown in
Table X,

| TABLE X
MODAL FREQUENCY SPECTRUM, 24-PROBE ARRAY

(h/a > 2)

EY “mn

Frequency Order m n “mn ’\/; “10

1 1 0 1.35 1.00

2 1 1 2.31 1,71

3 1 2 2.92 2.16

4 9 0 3.27 2.42

5 1 3 3.42 2,52

6 11 0 3.56 2.64

7 13 0 3.84 2.84

8 1 4 3.85 2.85

9 9 1 3.96 2.94

10 11 1 4,18 3.10

In the 24-probe case, the frequency content of the bridge signals
would be wholely m = 1 modes to 1-2/10 octaves above the lowest m = 1
mode; them =1, n = 0 and 1 modes might be discriminated with a frequency
analysis. For practical purposes, the 24-probe array is slightly better
than the l6-probe case and slightly worse than the 32-probe case,

PRACTICAL REALIZATIONS

Axisymmetric Modes

Plate I is a photograph of a practical realization for symmetric
(m = 0) mode discrimination. The probe is on the tank axis and is a surface
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piercing capacitance type of No, 26 magnet wire (Niclad insulation), Quite
adequate sensitivity (about 2 volts/inch surface elevation) was obtained using
a Tektronix "Q' unit and No. 133 power supply in a capacitance measuring
mode. This system is that used for the experiments of Reference 1.

Antisymmetric Modes (m = 1)

Table XI summarizes the array designs which were considered suit-
able for the longitudinal random excitation experiments contemplated in the
present program. The five designs are arranged in the estimated order of
increasing sensitivity to minor errors in probe position. (Some preliminary
computations on sensitivity were made but are not detailed herein.)

The first two columns show two probes having equal discrimination
properties (4 probe and 8 probe). The effect in each is to make the separa-
tion of the m = 1, n = 0 mode from all others more pronounced., Of the two,
the array with overlapping probes has potentially difficult electronic prob-
lems, and the 8-probe array is to be preferred. As the number of probes
is increased, the number of m = 1 modes which it is estimated could be dis-
criminated by a frequency analysis increases. Unfortunately, though the
lowest undesired odd mode for the most complicated array corresponds to
m = 9, the lowest unwanted frequency does not increase so much, and, for
instance, a fourfold increase in the number of probes provides only a three-
fold increase in the number of m = 1 modes which may be discriminated with
a frequency analysis.

Although the lowest m = 2, 3, 4 modes have been generated in the
laboratory, they are difficult to start, maintain and recognize visually.
Whether or not them=5,7,9,... modes will appear under longitudinal
excitation of any sort is not known. There is some reason to believe that
the higher order circumferential modes may not be a problem, due to high
damping.

For present purposes, it was felt that the 16-probe array of Table XI
was the best all around choice for further development, and a summary of
reasons follows:

(1) It is probably desirable to be able to discriminate the lowest
two m = 1 modes, and to have at least an octave frequency
separation between the m = 1, n = 0 mode and the frequency
where the modal ambiguities begin,

(2) There exists the possibility that the m = 7, and higher modes
are highly damped and would not appear in any case.
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(3) Such an array would probably be the first of its kind, Thus,
minimization of mechanical construction and electronic
trimming difficulties is highly desirable.

(4) The 16 and higher probe arrays are almost totally unaffected
by probe width, A. Thus, wire probes could be substituted
for the plate type, though a capacitance principle of operation
is mandatory.

Plate II is a photograph of a realization ofa l16-probe array constructed
in the same size tank as was used in Reference 1. Each probe is a brass
plate 0.125 £ 0,001 in., wide imbedded in the plastic tank wall flush with the
inner tank surface. Insulation is provided by 0.002-in. Mylar pressure sensi-
tive tape. Circumferential location of the probes was easily achieved within
+1/50 degree, and a sensitivity analysis indicates that odd mode transmission
should be as close to that shown in Table V as could be measured. Wiring
and checkout of this design were not completed within the limits of the present
exploratory program.

SUMMARY

The mode discrimination problem stems from the assumption that the
instantaneous free surface in the cylindrical tank may be described by a
superposition of normal modes. The array designs developed are built
around the usual linear normal mode theory.

The discrimination problem for axially symmetric modes may be
solved very simply by a fluid elevation probe on the tank axis. In theory,
none of the antisymmetric modes contribute at this point.

The discrimination problem for antisymmetric modes is an order
of magnitude more difficult. The emphasis in the present work has been
on the '"'m = 1" modes which are the important ones from the rocket booster
stability and control viewpoint. The tentative designs achieved in the
present work involve determination of the positions which will in effect do
a continuous spatial harmonic analysis of the fluid elevation around the tank
wall for the (time varying) amplitude of the first few m = 1 modes. It was
found that the orientation of the nodes for m = 1 modes may be obtained
with two arrays, the signal of one array being proportional to the cosine
and the other to the sine of the angle the node makes with an array reference
angle. No way of discriminating all m = 1 modes from all others was found,
although the separation of all my3qq modes from all meV;modes is straight-
forward.
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A slightly different probe is suggested for measuring free surface
elevations around the tank wall--essentially a curved capacitor imbedded
in the wall. This type of probe is vital for one class of arrays visualized,
(the "4 or 2-probe integrating' type). Though not considered useful for the
longitudinal random vibration case, one of these arrays may be interesting
for purposes of ''filtering'' relatively small amplitude m = 3, 5, 7, ... modes
and all mgyen modes from a measurement of m = 1 mode amplitudes. Mea-
surement of nodal position is possible only with some special electronic
measuring techniques, however,

Equispaced (around the circumference) arrays of probes, the natural
start for a harmonic analysis, appear unsuitable in most cases because
a gain adjustment must be made for each probe.

A type of array termed ''doubly symmetric' was found which has the
desired general property of rejecting all modes corresponding to even m
and is arranged into two bridges for measurement of nodal position. Four
arrays of this type were found which reject certain of the modes having
odd m. These arrays do not reject all the modes that could be desired, but,
by removing some of the lower odd circumferential modes, the lowest of
the m = 1 modes may be examined by a frequency analysis.

i It is conceivable that the present development could have other
applications, shell vibration, for example. The solutions given for doubly
symmetric arrays are also directly applicable to harmonic analyses (for
the fundamental) as the arrays are essentially Tchebycheff-Radau quadrature
formulas.
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PLATE I. TANK WITHPROBE ON TANK AXIS --
SYMMETRIC MODE DISCRIMINATION
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PLATE II. ANTISYMMETRIC MODE DISCRIMINATION--
TANK FITTED WITH 16-PROBE ARRAY
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